Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Exp Dermatol ; 32(10): 1624-1632, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37350109

RESUMO

The gut microbiome is increasingly recognized to alter cancer risk, progression and response to treatments such as immunotherapy, especially in cutaneous melanoma. However, whether the microbiome influences immune checkpoint inhibitor (ICI) immunotherapy response to non-melanoma skin cancer has not yet been defined. As squamous cell carcinomas (SCC) are in closest proximity to the skin microbiome, we hypothesized that the skin microbiome, which regulates cutaneous immunity, might affect SCC-associated anti-PD1 immunotherapy treatment response. We used ultraviolet radiation to induce SCC in SKH1 hairless mice. We then treated the mice with broad-band antibiotics to deplete the microbiome, followed by colonisation by candidate skin and gut bacteria or persistent antibiotic treatment, all in parallel with ICI treatment. We longitudinally monitored skin and gut microbiome dynamics by 16S rRNA gene sequencing and tumour burden by periodic tumour measurements and histologic assessment. Our study revealed that antibiotics-induced abrogation of the microbiome reduced the tumour burden, suggesting a functional role of the microbiome in non-melanoma skin cancer therapy response.


Assuntos
Carcinoma de Células Escamosas , Microbioma Gastrointestinal , Imunoterapia , Melanoma , Neoplasias Cutâneas , Animais , Camundongos , Antibacterianos/uso terapêutico , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/terapia , Imunoterapia/métodos , Melanoma/terapia , Microbiota , RNA Ribossômico 16S/genética , Neoplasias Cutâneas/imunologia , Neoplasias Cutâneas/terapia , Raios Ultravioleta , Microbioma Gastrointestinal/imunologia
2.
Res Sq ; 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36993518

RESUMO

Purpose: Patients with non-infectious complications have worse clinical outcomes in common variable immunodeficiency (CVID) than those with infections-only. Non-infectious complications are associated with gut microbiome aberrations, but there are no reductionist animal models that emulate CVID. Our aim in this study was to uncover potential microbiome roles in the development of non-infectious complications in CVID. Methods: We examined fecal whole genome shotgun sequencing from patients CVID, and non-infectious complications, infections-only, and their household controls. We also performed Fecal Microbiota transplant from CVID patients to Germ-Free Mice. Results: We found potentially pathogenic microbes Streptococcus parasanguinis and Erysipelatoclostridium ramosum were enriched in gut microbiomes of CVID patients with non-infectious complications. In contrast, Fusicatenibacter saccharivorans and Anaerostipes hadrus, known to suppress inflammation and promote healthy metabolism, were enriched in gut microbiomes of infections-only CVID patients. Fecal microbiota transplant from non-infectious complications, infections-only, and their household controls into germ-free mice revealed gut dysbiosis patterns in recipients from CVID patients with non-infectious complications, but not infections-only CVID, or household controls recipients. Conclusion: Our findings provide a proof of concept that fecal microbiota transplant from CVID patients with non-infectious complications to Germ-Free mice recapitulates microbiome alterations observed in the donors.

3.
bioRxiv ; 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36747869

RESUMO

The gut microbiome is increasingly recognized to alter cancer risk, progression, and response to treatments such as immunotherapy, especially in cutaneous melanoma. However, whether the microbiome influences immune checkpoint inhibitor (ICI) immunotherapy response to non-melanoma skin cancer has not yet been defined. As squamous cell carcinomas (SCC) are in closest proximity to the skin microbiome, we hypothesized that the skin microbiome, which regulates cutaneous immunity, might affect SCC-associated anti-PD1 immunotherapy treatment response. We used ultraviolet radiation to induce SCC in SKH1 hairless mice. We then treated the mice with broad-band antibiotics to deplete the microbiome, followed by colonization by candidate skin and gut bacteria or persistent antibiotic treatment, all in parallel with ICI treatment. We longitudinally monitored skin and gut microbiome dynamics by 16S rRNA gene sequencing, and tumor burden by periodic tumor measurements and histologic assessment. Our study revealed that antibiotics-induced abrogation of the microbiome reduced tumor burden, suggesting a functional role of the microbiome in non-melanoma skin cancer therapy response.

4.
Nat Aging ; 2(10): 941-955, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36398033

RESUMO

Older adults represent a vulnerable population with elevated risk for numerous morbidities. To explore the association of the microbiome with aging and age-related susceptibilities including frailty and infectious disease risk, we conducted a longitudinal study of the skin, oral, and gut microbiota in 47 community- or skilled nursing facility-dwelling older adults vs. younger adults. We found that microbiome changes were not associated with chronological age so much as frailty: we identified prominent changes in microbiome features associated with susceptibility to pathogen colonization and disease risk, including diversity, stability, heterogeneity, and biogeographic determinism, which were moreover associated with a loss of Cutibacterium (C.) acnes in the skin microbiome. Strikingly, the skin microbiota were also the primary reservoir for antimicrobial resistance, clinically important pathobionts, and nosocomial strains, suggesting a potential role particularly for the skin microbiome in disease risk and dissemination of multidrug resistant pathogens.


Assuntos
Fragilidade , Microbioma Gastrointestinal , Infecções , Microbiota , Humanos , Idoso , Fragilidade/epidemiologia , Estudos Longitudinais , Suscetibilidade a Doenças/microbiologia
5.
J Invest Dermatol ; 142(10): 2773-2782.e16, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35390349

RESUMO

The skin microbiome plays a critical role in skin homeostasis and disorders. UVR is the major cause of nonmelanoma skin cancer, but other risk factors, including immune suppression, chronic inflammation, and antibiotic usage, suggest the microbiome as an additional, unexplored risk factor and potential disease biomarker. The overarching goal was to study the skin microbiome in squamous cell carcinoma (SCC) and premalignant actinic keratosis compared with that in healthy skin to identify skin cancer‒associated changes in the skin microbiome. We performed a high-resolution analysis of shotgun metagenomes of actinic keratosis and SCC in healthy skin, revealing the microbial community shifts specific to actinic keratosis and SCC. Most prominently, the relative abundance of pathobiont Staphylococcus aureus was increased at the expense of commensal Cutibacterium acnes in SCC compared with that in healthy skin, and enrichment of functional pathways in SCC reflected this shift. Notably, C. acnes associated with lesional versus healthy skin differed at the strain level, suggesting the specific functional changes associated with its depletion in SCC. Our study revealed a transitional microbial dysbiosis from healthy skin to actinic keratosis to SCC, supporting further investigation of the skin microbiome for use as a biomarker and providing hypotheses for studies investigating how these microbes might influence skin cancer progression.


Assuntos
Carcinoma de Células Escamosas , Ceratose Actínica , Microbiota , Neoplasias Cutâneas , Antibacterianos , Carcinoma de Células Escamosas/patologia , Humanos , Ceratose Actínica/patologia , Neoplasias Cutâneas/patologia
6.
BMC Microbiol ; 21(1): 278, 2021 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-34649516

RESUMO

BACKGROUND: Genomics-driven discoveries of microbial species have provided extraordinary insights into the biodiversity of human microbiota. In addition, a significant portion of genetic variation between microbiota exists at the subspecies, or strain, level. High-resolution genomics to investigate species- and strain-level diversity and mechanistic studies, however, rely on the availability of individual microbes from a complex microbial consortia. High-throughput approaches are needed to acquire and identify the significant species- and strain-level diversity present in the oral, skin, and gut microbiome. Here, we describe and validate a streamlined workflow for cultivating dominant bacterial species and strains from the skin, oral, and gut microbiota, informed by metagenomic sequencing, mass spectrometry, and strain profiling. RESULTS: Of total genera discovered by either metagenomic sequencing or culturomics, our cultivation pipeline recovered between 18.1-44.4% of total genera identified. These represented a high proportion of the community composition reconstructed with metagenomic sequencing, ranging from 66.2-95.8% of the relative abundance of the overall community. Fourier-Transform Infrared spectroscopy (FT-IR) was effective in differentiating genetically distinct strains compared with whole-genome sequencing, but was less effective as a proxy for genetic distance. CONCLUSIONS: Use of a streamlined set of conditions selected for cultivation of skin, oral, and gut microbiota facilitates recovery of dominant microbes and their strain variants from a relatively large sample set. FT-IR spectroscopy allows rapid differentiation of strain variants, but these differences are limited in recapitulating genetic distance. Our data highlights the strength of our cultivation and characterization pipeline, which is in throughput, comparisons with high-resolution genomic data, and rapid identification of strain variation.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/genética , Técnicas Bacteriológicas/métodos , Microbioma Gastrointestinal/genética , Boca/microbiologia , Pele/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Genoma Bacteriano/genética , Humanos
7.
Nat Med ; 25(4): 679-689, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30936547

RESUMO

Association studies have linked microbiome alterations with many human diseases. However, they have not always reported consistent results, thereby necessitating cross-study comparisons. Here, a meta-analysis of eight geographically and technically diverse fecal shotgun metagenomic studies of colorectal cancer (CRC, n = 768), which was controlled for several confounders, identified a core set of 29 species significantly enriched in CRC metagenomes (false discovery rate (FDR) < 1 × 10-5). CRC signatures derived from single studies maintained their accuracy in other studies. By training on multiple studies, we improved detection accuracy and disease specificity for CRC. Functional analysis of CRC metagenomes revealed enriched protein and mucin catabolism genes and depleted carbohydrate degradation genes. Moreover, we inferred elevated production of secondary bile acids from CRC metagenomes, suggesting a metabolic link between cancer-associated gut microbes and a fat- and meat-rich diet. Through extensive validations, this meta-analysis firmly establishes globally generalizable, predictive taxonomic and functional microbiome CRC signatures as a basis for future diagnostics.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Metagenoma , Adenoma/genética , Adenoma/microbiologia , Idoso , Biomarcadores Tumorais/metabolismo , Estudos de Coortes , Bases de Dados Genéticas , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Biológicos , Reprodutibilidade dos Testes , Especificidade da Espécie
8.
Elife ; 82019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30747106

RESUMO

The gastrointestinal tract is abundantly colonized by microbes, yet the translocation of oral species to the intestine is considered a rare aberrant event, and a hallmark of disease. By studying salivary and fecal microbial strain populations of 310 species in 470 individuals from five countries, we found that transmission to, and subsequent colonization of, the large intestine by oral microbes is common and extensive among healthy individuals. We found evidence for a vast majority of oral species to be transferable, with increased levels of transmission in colorectal cancer and rheumatoid arthritis patients and, more generally, for species described as opportunistic pathogens. This establishes the oral cavity as an endogenous reservoir for gut microbial strains, and oral-fecal transmission as an important process that shapes the gastrointestinal microbiome in health and disease.


Assuntos
Bactérias/classificação , Bactérias/genética , Intestino Grosso/microbiologia , Microbiota , Boca/microbiologia , Análise por Conglomerados , Fezes/microbiologia , Humanos , Metagenômica , Saliva/microbiologia
10.
Mucosal Immunol ; 11(6): 1591-1605, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30115998

RESUMO

Human mucosal-associated invariant T (MAIT) cell receptors (TCRs) recognize bacterial riboflavin pathway metabolites through the MHC class 1-related molecule MR1. However, it is unclear whether MAIT cells discriminate between many species of the human microbiota. To address this, we developed an in vitro functional assay through human T cells engineered for MAIT-TCRs (eMAIT-TCRs) stimulated by MR1-expressing antigen-presenting cells (APCs). We then screened 47 microbiota-associated bacterial species from different phyla for their eMAIT-TCR stimulatory capacities. Only bacterial species that encoded the riboflavin pathway were stimulatory for MAIT-TCRs. Most species that were high stimulators belonged to Bacteroidetes and Proteobacteria phyla, whereas low/non-stimulator species were primarily Actinobacteria or Firmicutes. Activation of MAIT cells by high- vs low-stimulating bacteria also correlated with the level of riboflavin they secreted or after bacterial infection of macrophages. Remarkably, we found that human T-cell subsets can also present riboflavin metabolites to MAIT cells in a MR1-restricted fashion. This T-T cell-mediated signaling also induced IFNγ, TNF and granzyme B from MAIT cells, albeit at lower level than professional APC. These findings suggest that MAIT cells can discriminate and categorize complex human microbiota through computation of TCR signals depending on antigen load and presenting cells, and fine-tune their functional responses.


Assuntos
Bacteroidetes/imunologia , Macrófagos/imunologia , Microbiota/imunologia , Células T Invariantes Associadas à Mucosa/imunologia , Proteobactérias/imunologia , Riboflavina/metabolismo , Apresentação de Antígeno , Antígenos de Bactérias/imunologia , Células Cultivadas , Engenharia Genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Interferon gama/metabolismo , Ativação Linfocitária , Macrófagos/microbiologia , Antígenos de Histocompatibilidade Menor/metabolismo , Células T Invariantes Associadas à Mucosa/microbiologia , Receptores de Antígenos de Linfócitos T/genética , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
11.
BMJ Open ; 8(7): e021682, 2018 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-30056386

RESUMO

OBJECTIVE: Changes in the gut microbiota are increasingly recognised to be involved in many diseases. This ecosystem is known to be shaped by many factors, including climate, geography, host nutrition, lifestyle and medication. Thus, knowledge of varying populations with different habits is important for a better understanding of the microbiome. DESIGN: We therefore conducted a metagenomic analysis of intestinal microbiota from Kazakh donors, recruiting 84 subjects, including male and female healthy subjects and metabolic syndrome (MetS) patients aged 25-75 years, from the Kazakh administrative centre, Astana. We characterise and describe these microbiomes, the first deep-sequencing cohort from Central Asia, in comparison with a global dataset (832 individuals from five countries on three continents), and explore correlations between microbiota, clinical and laboratory parameters as well as with nutritional data from Food Frequency Questionnaires. RESULTS: We observe that Kazakh microbiomes are relatively different from both European and East Asian counterparts, though similar to other Central Asian microbiomes, with the most striking difference being significantly more samples falling within the Prevotella-rich enterotype, potentially reflecting regional diet and lifestyle. We show that this enterotype designation remains stable within an individual over time in 82% of cases. We further observe gut microbiome features that distinguish MetS patients from controls (eg, significantly reduced Firmicutes to Bacteroidetes ratio, Bifidobacteria and Subdoligranulum, alongside increased Prevotella), though these overlap little with previously published reports and thus may reflect idiosyncrasies of the present cohort. CONCLUSION: Taken together, this exploratory study describes gut microbiome data from an understudied population, providing a starting point for further comparative work on biogeography and research on widespread diseases. TRIAL REGISTRATION NUMBER: ISRCTN37346212; Post-results.


Assuntos
Microbioma Gastrointestinal , Probióticos/administração & dosagem , Adulto , Idoso , Estudos de Casos e Controles , Estudos de Coortes , Fezes/microbiologia , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cazaquistão , Masculino , Síndrome Metabólica/microbiologia , Metagenômica , Pessoa de Meia-Idade
13.
Dtsch Med Wochenschr ; 142(4): 267-274, 2017 Feb.
Artigo em Alemão | MEDLINE | ID: mdl-28235227

RESUMO

The human microbiome - the vast amount of microbes that colonize our body - play an important role in maintaining our health. Changes in microbiome composition have been linked to multiple diseases including cancer. Although mechanisms and causalities of these associations still have to be uncovered, microbiome alterations across various stages of disease can be utilized for novel diagnostic and prognostic tests. Research on biomarkers extracted from the gut microbiome has in particular focused on colorectal cancer, where clinical use is already on the horizon. For example, multiple microbial taxonomic markers such as Fusobacterium nucleatum and other oral pathogens have been identified in human feces with potential for non-invasive diagnostics and prognostics. The article summarizes the recent developments, but also limitations and challenges for the development of microbiome-based biomarkers for cancer early detection.


Assuntos
Bactérias/isolamento & purificação , Carga Bacteriana/métodos , Colo/microbiologia , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/microbiologia , Detecção Precoce de Câncer/métodos , Biomarcadores/análise , Medicina Baseada em Evidências , Humanos
14.
PLoS One ; 11(5): e0155362, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27171425

RESUMO

Accumulating evidence indicates that the gut microbiota affects colorectal cancer development, but previous studies have varied in population, technical methods, and associations with cancer. Understanding these variations is needed for comparisons and for potential pooling across studies. Therefore, we performed whole-genome shotgun sequencing on fecal samples from 52 pre-treatment colorectal cancer cases and 52 matched controls from Washington, DC. We compared findings from a previously published 16S rRNA study to the metagenomics-derived taxonomy within the same population. In addition, metagenome-predicted genes, modules, and pathways in the Washington, DC cases and controls were compared to cases and controls recruited in France whose specimens were processed using the same platform. Associations between the presence of fecal Fusobacteria, Fusobacterium, and Porphyromonas with colorectal cancer detected by 16S rRNA were reproduced by metagenomics, whereas higher relative abundance of Clostridia in cancer cases based on 16S rRNA was merely borderline based on metagenomics. This demonstrated that within the same sample set, most, but not all taxonomic associations were seen with both methods. Considering significant cancer associations with the relative abundance of genes, modules, and pathways in a recently published French metagenomics dataset, statistically significant associations in the Washington, DC population were detected for four out of 10 genes, three out of nine modules, and seven out of 17 pathways. In total, colorectal cancer status in the Washington, DC study was associated with 39% of the metagenome-predicted genes, modules, and pathways identified in the French study. More within and between population comparisons are needed to identify sources of variation and disease associations that can be reproduced despite these variations. Future studies should have larger sample sizes or pool data across studies to have sufficient power to detect associations that are reproducible and significant after correction for multiple testing.


Assuntos
Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Microbioma Gastrointestinal/genética , Análise de Sequência de DNA , Estudos de Casos e Controles , District of Columbia , Feminino , Genoma Humano , Humanos , Masculino , Pessoa de Meia-Idade , RNA Ribossômico 16S/genética , Reprodutibilidade dos Testes
15.
Bioinformatics ; 32(16): 2520-3, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27153620

RESUMO

UNLABELLED: MOCAT2 is a software pipeline for metagenomic sequence assembly and gene prediction with novel features for taxonomic and functional abundance profiling. The automated generation and efficient annotation of non-redundant reference catalogs by propagating pre-computed assignments from 18 databases covering various functional categories allows for fast and comprehensive functional characterization of metagenomes. AVAILABILITY AND IMPLEMENTATION: MOCAT2 is implemented in Perl 5 and Python 2.7, designed for 64-bit UNIX systems and offers support for high-performance computer usage via LSF, PBS or SGE queuing systems; source code is freely available under the GPL3 license at http://mocat.embl.de CONTACT: : bork@embl.de SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenômica , Software , Bases de Dados Factuais , Metagenoma
16.
Science ; 352(6285): 586-9, 2016 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-27126044

RESUMO

Fecal microbiota transplantation (FMT) has shown efficacy in treating recurrent Clostridium difficile infection and is increasingly being applied to other gastrointestinal disorders, yet the fate of native and introduced microbial strains remains largely unknown. To quantify the extent of donor microbiota colonization, we monitored strain populations in fecal samples from a recent FMT study on metabolic syndrome patients using single-nucleotide variants in metagenomes. We found extensive coexistence of donor and recipient strains, persisting 3 months after treatment. Colonization success was greater for conspecific strains than for new species, the latter falling within fluctuation levels observed in healthy individuals over a similar time frame. Furthermore, same-donor recipients displayed varying degrees of microbiota transfer, indicating individual patterns of microbiome resistance and donor-recipient compatibilities.


Assuntos
Infecções por Clostridium/terapia , Transplante de Microbiota Fecal , Microbioma Gastrointestinal/fisiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Infecções por Clostridium/microbiologia , Fezes/microbiologia , Humanos , Simbiose , Doadores de Tecidos , Transplante Homólogo
17.
Nature ; 528(7581): 262-266, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26633628

RESUMO

In recent years, several associations between common chronic human disorders and altered gut microbiome composition and function have been reported. In most of these reports, treatment regimens were not controlled for and conclusions could thus be confounded by the effects of various drugs on the microbiota, which may obscure microbial causes, protective factors or diagnostically relevant signals. Our study addresses disease and drug signatures in the human gut microbiome of type 2 diabetes mellitus (T2D). Two previous quantitative gut metagenomics studies of T2D patients that were unstratified for treatment yielded divergent conclusions regarding its associated gut microbial dysbiosis. Here we show, using 784 available human gut metagenomes, how antidiabetic medication confounds these results, and analyse in detail the effects of the most widely used antidiabetic drug metformin. We provide support for microbial mediation of the therapeutic effects of metformin through short-chain fatty acid production, as well as for potential microbiota-mediated mechanisms behind known intestinal adverse effects in the form of a relative increase in abundance of Escherichia species. Controlling for metformin treatment, we report a unified signature of gut microbiome shifts in T2D with a depletion of butyrate-producing taxa. These in turn cause functional microbiome shifts, in part alleviated by metformin-induced changes. Overall, the present study emphasizes the need to disentangle gut microbiota signatures of specific human diseases from those of medication.


Assuntos
Diabetes Mellitus Tipo 2/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Metformina/farmacologia , Biodiversidade , Diabetes Mellitus Tipo 2/tratamento farmacológico , Feminino , Microbioma Gastrointestinal/genética , Humanos , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Masculino , Metagenoma/efeitos dos fármacos , Metagenoma/fisiologia , Metformina/uso terapêutico , RNA Ribossômico 16S/genética
18.
Genome Biol ; 16: 73, 2015 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-25888008

RESUMO

BACKGROUND: Metagenomics has become a prominent approach for exploring the role of the gut microbiota in human health. However, the temporal variability of the healthy gut microbiome has not yet been studied in depth using metagenomics and little is known about the effects of different sampling and preservation approaches. We performed metagenomic analysis on fecal samples from seven subjects collected over a period of up to two years to investigate temporal variability and assess preservation-induced variation, specifically, fresh frozen compared to RNALater. We also monitored short-term disturbances caused by antibiotic treatment and bowel cleansing in one subject. RESULTS: We find that the human gut microbiome is temporally stable and highly personalized at both taxonomic and functional levels. Over multiple time points, samples from the same subject clustered together, even in the context of a large dataset of 888 European and American fecal metagenomes. One exception was observed in an antibiotic intervention case where, more than one year after the treatment, samples did not resemble the pre-treatment state. Clustering was not affected by the preservation method. No species differed significantly in abundance, and only 0.36% of gene families were differentially abundant between preservation methods. CONCLUSIONS: Technical variability is small compared to the temporal variability of an unperturbed gut microbiome, which in turn is much smaller than the observed between-subject variability. Thus, short-term preservation of fecal samples in RNALater is an appropriate and cost-effective alternative to freezing of fecal samples for metagenomic studies.


Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal/microbiologia , Genoma Humano , Metagenoma/genética , Fatores de Tempo , Adulto , Análise por Conglomerados , DNA Bacteriano/genética , Fezes/microbiologia , Feminino , Trato Gastrointestinal/metabolismo , Humanos , Masculino , Metagenômica/métodos
19.
Cancer Immunol Immunother ; 64(3): 357-66, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25445815

RESUMO

Besides being expressed on professional antigen-presenting cells, HLA class II antigens are expressed on various tumors of non-lymphoid origin, including a subset of colorectal cancers (CRC). Information about the regulation of HLA class II antigen expression is important for a better understanding of their role in the interactions between tumor and immune cells. Whether lack of HLA class II antigen expression in tumors reflects the selective immune destruction of HLA class II antigen-expressing tumor cells is unknown. To address this question, we tested whether lack of HLA class II antigen expression in CRC was associated with immune cell infiltration. We selected microsatellite-unstable (MSI-H) CRC, because they show pronounced tumor antigen-specific immune responses and, in a subset of tumors, lack of HLA class II antigen expression due to mutations inactivating HLA class II-regulatory genes. We examined HLA class II antigen expression, mutations in regulatory genes, and CD4-positive T cell infiltration in 69 MSI-H CRC lesions. Mutations in RFX5, CIITA, and RFXAP were found in 13 (28.9%), 3 (6.7%), and 1 (2.2%) out of 45 HLA class II antigen-negative tumors. CD4-positive tumor-infiltrating lymphocyte counts were significantly higher in HLA class II antigen-negative tumors harboring mutations in HLA class II-regulatory genes (107.4 T cells per 0.25 mm(2)) compared to tumors without mutations (55.5 T cells per 0.25 mm(2), p = 0.008). Our results suggest that the outgrowth of tumor cells lacking HLA class II antigen expression due to mutations of regulatory genes is favored in an environment of dense CD4-positive T cell infiltration.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/imunologia , Genes MHC da Classe II , Linfócitos do Interstício Tumoral/imunologia , Mutação , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/biossíntese , Antígenos de Neoplasias/imunologia , Feminino , Humanos , Masculino , Repetições de Microssatélites , Pessoa de Meia-Idade
20.
Mol Syst Biol ; 10: 766, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25432777

RESUMO

Several bacterial species have been implicated in the development of colorectal carcinoma (CRC), but CRC-associated changes of fecal microbiota and their potential for cancer screening remain to be explored. Here, we used metagenomic sequencing of fecal samples to identify taxonomic markers that distinguished CRC patients from tumor-free controls in a study population of 156 participants. Accuracy of metagenomic CRC detection was similar to the standard fecal occult blood test (FOBT) and when both approaches were combined, sensitivity improved > 45% relative to the FOBT, while maintaining its specificity. Accuracy of metagenomic CRC detection did not differ significantly between early- and late-stage cancer and could be validated in independent patient and control populations (N = 335) from different countries. CRC-associated changes in the fecal microbiome at least partially reflected microbial community composition at the tumor itself, indicating that observed gene pool differences may reveal tumor-related host-microbe interactions. Indeed, we deduced a metabolic shift from fiber degradation in controls to utilization of host carbohydrates and amino acids in CRC patients, accompanied by an increase of lipopolysaccharide metabolism.


Assuntos
Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/microbiologia , Detecção Precoce de Câncer/métodos , Fezes/microbiologia , Estudos de Casos e Controles , Humanos , Metagenômica/métodos , Microbiota , Tipagem Molecular , Sangue Oculto , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...